Studientyp:
Medizinische/biologische Studie
(experimentelle Studie)
Induction of genomic instability, oxidative processes, and mitochondrial activity by 50Hz magnetic fields in human SH-SY5Y neuroblastoma cells
med./bio.
[Auslösung von genomischer Instabilität, oxidativen Prozessen und mitochondrialer Aktivität durch 50 Hz-Magnetfelder in menschlichen SH-SY5Y Neuroblastom-Zellen]
Von:
Luukkonen J, Liimatainen A, Juutilainen J, Naarala J
Veröffentlicht in: Mutation Research - Fundamental and Molecular Mechanism of Mutagenesis 2014; 760: 33-41
Es sollten die zellulären Veränderungen während der ersten 24 Stunden einer Exposition bei einem 50 Hz-Magnetfeld untersucht werden, und es sollte überprüft werden, ob die verursachten Veränderungen zu genomischer Instabilität bei den Abkömmlingen der exponiertenZellen führen könnten.
Hintergrund/weitere Details
In vorherigen Studien (Markkanen et al. 2008, Luukkonen et al. 2011) fanden die Autoren, dass eine Vorab-Exposition bei einem 50 Hz-Magnetfeld vor einer Menadion-Behandlung die Zell-Reaktion verändert und die Genotoxizität erhöht. Menadion ist eine Substanz, die freie Radikale produziert und die DNA schädigt. Die Zellen wurden für 24 Stunden bei einem Magnetfeldexponiert oder schein-exponiert. Anschließend wurden sie für drei Stunden mit oder ohne Menadion-Behandlung inkubiert (verschiedene Konzentrationen an Menadion wurden eingesetzt). Die Häufigkeit an Mikronuklei wurde 11 oder 18 Tage nach der Menadion-Behandlung bestimmt. Alle anderen Assays wurden direkt im Anschluss an die Magnetfeld-Exposition/Schein-Exposition, direkt nach der Menadion-Behandlung oder 8 oder 15 Tage nach der Menadion-Behandlung durchgeführt.
a pair of coils (34 x 46 cm) was placed in an incubator with 5 % CO2 and 37°C, distance between the coils 22 cm, coils generated a horizontal magnetic field, cells were positioned at the center of the coils for ensuring a uniform magnetic flux density
Martínez MA et al.
(2021):
Role of NADPH oxidase in MAPK signaling activation by a 50 Hz magnetic field in human neuroblastoma cells
Consales C et al.
(2021):
Exposure of the SH-SY5Y Human Neuroblastoma Cells to 50-Hz Magnetic Field: Comparison Between Two-Dimensional (2D) and Three-Dimensional (3D) In Vitro Cultures
Martínez MA et al.
(2019):
Involvement of the EGF Receptor in MAPK Signaling Activation by a 50 Hz Magnetic Field in Human Neuroblastoma Cells
Consales C et al.
(2018):
Fifty-Hertz Magnetic Field Affects the Epigenetic Modulation of the miR-34b/c in Neuronal Cells
Calcabrini C et al.
(2017):
Effect of extremely low-frequency electromagnetic fields on antioxidant activity in the human keratinocyte cell line NCTC 2544
Villarini M et al.
(2017):
No evidence of DNA damage by co-exposure to extremely low frequency magnetic fields and aluminum on neuroblastoma cell lines
Falone S et al.
(2017):
Power frequency magnetic field promotes a more malignant phenotype in neuroblastoma cells via redox-related mechanisms
Naarala J et al.
(2017):
Direction-Dependent Effects of Combined Static and ELF Magnetic Fields on Cell Proliferation and Superoxide Radical Production
Luukkonen J et al.
(2017):
Modification of p21 level and cell cycle distribution by 50 Hz magnetic fields in human SH-SY5Y neuroblastoma cells
Kesari KK et al.
(2016):
Induction of micronuclei and superoxide production in neuroblastoma and glioma cell lines exposed to weak 50 Hz magnetic fields
Feng B et al.
(2016):
Exposure to a 50-Hz magnetic field induced mitochondrial permeability transition through the ROS/GSK-3beta signaling pathway
Reale M et al.
(2016):
Effect of environmental extremely low-frequency electromagnetic fields exposure on inflammatory mediators and serotonin metabolism in a human neuroblastoma cell line
Martinez MA et al.
(2016):
Power Frequency Magnetic Fields Affect the p38 MAPK-Mediated Regulation of NB69 Cell Proliferation Implication of Free Radicals
Yin C et al.
(2016):
Neuroprotective effects of lotus seedpod procyanidins on extremely low frequency electromagnetic field-induced neurotoxicity in primary cultured hippocampal neurons
Falone S et al.
(2016):
Improved Mitochondrial and Methylglyoxal-Related Metabolisms Support Hyperproliferation Induced by 50 Hz Magnetic Field in Neuroblastoma Cells
Benassi B et al.
(2016):
Extremely low frequency magnetic field (ELF-MF) exposure sensitizes SH-SY5Y cells to the pro-Parkinson's disease toxin MPP+
Destefanis M et al.
(2015):
Extremely low frequency electromagnetic fields affect proliferation and mitochondrial activity of human cancer cell lines
Mun GI et al.
(2015):
Effects of 60-Hz magnetic fields on DNA damage responses in HT22 mouse hippocampal cell lines
Kesari KK et al.
(2015):
Genomic instability induced by 50Hz magnetic fields is a dynamically evolving process not blocked by antioxidant treatment
Giorgi G et al.
(2014):
An evaluation of genotoxicity in human neuronal-type cells subjected to oxidative stress under an extremely low frequency pulsed magnetic field
Jin YB et al.
(2014):
Absence of DNA damage after 60-Hz electromagnetic field exposure combined with ionizing radiation, hydrogen peroxide, or c-Myc overexpression
Alcaraz M et al.
(2014):
Effect of long-term 50 Hz magnetic field exposure on the micronucleated polychromatic erythrocytes of mice
Calabro E et al.
(2013):
50 Hz electromagnetic field produced changes in FTIR spectroscopy associated with mitochondrial transmembrane potential reduction in neuronal-like SH-SY5Y cells
Jin YB et al.
(2012):
Effects on micronuclei formation of 60-Hz electromagnetic field exposure with ionizing radiation, hydrogen peroxide, or c-Myc overexpression
Kim J et al.
(2012):
Time-varying magnetic fields of 60 Hz at 7 mT induce DNA double-strand breaks and activate DNA damage checkpoints without apoptosis
Miyakoshi Y et al.
(2012):
Tempol suppresses micronuclei formation in astrocytes of newborn rats exposed to 50-Hz, 10-mT electromagnetic fields under bleomycin administration
Sulpizio M et al.
(2011):
Molecular basis underlying the biological effects elicited by extremely low-frequency magnetic field (ELF-MF) on neuroblastoma cells
Luukkonen J et al.
(2011):
Pre-Exposure to 50 Hz Magnetic Fields Modifies Menadione-Induced Genotoxic Effects in Human SH-SY5Y Neuroblastoma Cells
Luukkonen J et al.
(2009):
Enhancement of chemically induced reactive oxygen species production and DNA damage in human SH-SY5Y neuroblastoma cells by 872 MHz radiofrequency radiation
Markkanen A et al.
(2008):
Pre-exposure to 50 Hz magnetic fields modifies menadione-induced DNA damage response in murine L929 cells
Villarini M et al.
(2006):
Effects of co-exposure to extremely low frequency (50 Hz) magnetic fields and xenobiotics determined in vitro by the alkaline comet assay
Ivancsits S et al.
(2005):
Cell type-specific genotoxic effects of intermittent extremely low-frequency electromagnetic fields
Wolf FI et al.
(2005):
50-Hz extremely low frequency electromagnetic fields enhance cell proliferation and DNA damage: possible involvement of a redox mechanism
Cho YH et al.
(2003):
The effect of extremely low frequency electromagnetic fields (ELF-EMF) on the frequency of micronuclei and sister chromatid exchange in human lymphocytes induced by benzo(a)pyrene
Zeni O et al.
(2001):
Combined exposure to extremely low frequency (ELF) magnetic fields and chemical mutagens: Lack of genotoxic effects in human lymphocytes
Um diese Webseite für Sie optimal zu gestalten und fortlaufend verbessern zu können, verwenden wir Cookies. Durch die weitere Nutzung der Webseite stimmen Sie der Verwendung von Cookies zu.