Studientyp:
Medizinische/biologische Studie
(experimentelle Studie)
Exposure of the SH-SY5Y Human Neuroblastoma Cells to 50-Hz Magnetic Field: Comparison Between Two-Dimensional (2D) and Three-Dimensional (3D) In Vitro Cultures
med./bio.
[Exposition von menschlichen SH-SY5Y-Neuroblastom-Zellen bei einem 50 Hz-Magnetfeld: Vergleich zwischen zweidimensionalen (2D) und dreidimensionalen (3D) in vitro-Kulturen]
Von:
Consales C, Butera A, Merla C, Pasquali E, Lopresto V, Pinto R, Pierdomenico M, Mancuso M, Marino C, Benassi B
das Expositions-System bestand aus zwei Paaren quadratischer Spulen (zwei Spulen für jedes Teilsystem, koaxial in Helmholtz-Konfiguration angeordnet); die Doppeldraht-Konfiguration wurde für die Spulen der Schein-Exposition verwendet, was es ermöglichte, ein Null-Magnetfeld zu erzeugen, indem die Ströme in den Spulen in entgegengesetzte Richtungen flossen; das Magnetfeld hatte eine hohe Homogenität (95%) im Expositions-Volumen der Spulen (20 × 20 × 10 cm3); die Temperatur wurde in beiden Aufbauten bei 37,0 ± 0,2 °C gehalten
Ente per Le Nuove tecnologie, l'Energia e l'Ambiente (ENEA; Italian National Agency for New Technologies, Energy and the Environment), Italy
Themenverwandte Artikel
Merla C et al.
(2019):
Evidences of plasma membrane-mediated ROS generation upon ELF exposure in neuroblastoma cells supported by a computational multiscale approach
Consales C et al.
(2018):
Fifty-Hertz Magnetic Field Affects the Epigenetic Modulation of the miR-34b/c in Neuronal Cells
Calcabrini C et al.
(2017):
Effect of extremely low-frequency electromagnetic fields on antioxidant activity in the human keratinocyte cell line NCTC 2544
Luukkonen J et al.
(2017):
Modification of p21 level and cell cycle distribution by 50 Hz magnetic fields in human SH-SY5Y neuroblastoma cells
Falone S et al.
(2017):
Power frequency magnetic field promotes a more malignant phenotype in neuroblastoma cells via redox-related mechanisms
Falone S et al.
(2016):
Improved Mitochondrial and Methylglyoxal-Related Metabolisms Support Hyperproliferation Induced by 50 Hz Magnetic Field in Neuroblastoma Cells
Benassi B et al.
(2016):
Extremely low frequency magnetic field (ELF-MF) exposure sensitizes SH-SY5Y cells to the pro-Parkinson's disease toxin MPP+
Kesari KK et al.
(2016):
Induction of micronuclei and superoxide production in neuroblastoma and glioma cell lines exposed to weak 50 Hz magnetic fields
Martinez MA et al.
(2016):
Power Frequency Magnetic Fields Affect the p38 MAPK-Mediated Regulation of NB69 Cell Proliferation Implication of Free Radicals
Destefanis M et al.
(2015):
Extremely low frequency electromagnetic fields affect proliferation and mitochondrial activity of human cancer cell lines
Hilz FM et al.
(2014):
Influence of extremely low frequency, low energy electromagnetic fields and combined mechanical stimulation on chondrocytes in 3-D constructs for cartilage tissue engineering
Luukkonen J et al.
(2014):
Induction of genomic instability, oxidative processes, and mitochondrial activity by 50Hz magnetic fields in human SH-SY5Y neuroblastoma cells
Calabro E et al.
(2013):
50 Hz electromagnetic field produced changes in FTIR spectroscopy associated with mitochondrial transmembrane potential reduction in neuronal-like SH-SY5Y cells
Sulpizio M et al.
(2011):
Molecular basis underlying the biological effects elicited by extremely low-frequency magnetic field (ELF-MF) on neuroblastoma cells
Wolf FI et al.
(2005):
50-Hz extremely low frequency electromagnetic fields enhance cell proliferation and DNA damage: possible involvement of a redox mechanism
Um diese Webseite für Sie optimal zu gestalten und fortlaufend verbessern zu können, verwenden wir Cookies. Durch die weitere Nutzung der Webseite stimmen Sie der Verwendung von Cookies zu.