Cell suspension in Eppendorf tubes were incubated in the exposure system at 23°C. The cells were located in the region within the coils where the field was homogeneous.
Fojt L et al.
(2012):
Electrochemical evaluation of extremely-low frequency magnetic field effects on sulphate-reducing bacteria
Gao M et al.
(2011):
Extremely low frequency magnetic field effects on metabolite of Aspergillus niger
Ruiz-Gomez MJ et al.
(2010):
Effect of 2.45 mT sinusoidal 50 Hz magnetic field on Saccharomyces cerevisiae strains deficient in DNA strand breaks repair
Fojt L et al.
(2010):
Extremely-low frequency magnetic field effects on sulfate reducing bacteria viability
Ruiz-Gomez MJ et al.
(2010):
No evidence of cellular alterations by MilliTesla-level static and 50 Hz magnetic fields on S. cerevisiae
Ruiz-Gomez MJ et al.
(2008):
No effect of 50 Hz 2.45 mT magnetic field on the potency of cisplatin, mitomycin C, and methotrexate in S. cerevisiae
Fojt L et al.
(2007):
Effect of electromagnetic fields on the denitrification activity of Paracoccus denitrificans
Novak J et al.
(2007):
Effects of low-frequency magnetic fields on the viability of yeast Saccharomyces cerevisiae
Perez VH et al.
(2007):
Bioreactor coupled with electromagnetic field generator: effects of extremely low frequency electromagnetic fields on ethanol production by Saccharomyces cerevisiae
Berg A et al.
(2006):
Influence of ELF sinusoidal electromagnetic fields on proliferation and metabolite yield of fungi
Strasak L et al.
(2005):
Effects of 50 Hz magnetic fields on the viability of different bacterial strains
Motta MA et al.
(2001):
Changes in Saccharomyces cerevisiae development induced by magnetic fields
Um diese Webseite für Sie optimal zu gestalten und fortlaufend verbessern zu können, verwenden wir Cookies. Durch die weitere Nutzung der Webseite stimmen Sie der Verwendung von Cookies zu.