この研究は、PC12細胞の神経増殖因子(NGF)誘導性神経分化に対する超低周波磁界ばく露(ELF-MFs:50 Hz、1 mT、5日間)の影響をプロテオミック手法で調べた。その結果、ばく露群では、神経突起の長さ、神経突起を持つ細胞の数が増加し、増殖活性は低下した;NGFのみの群とNGF+ ELF-MFs群で、発現するたんぱく質に違いが見られた、と報告している。
The detailed summary of this article is not available in your language or incomplete. Would you like to see a complete translation of the summary? Then please contact us →
To investigate the effects of extremely low frequency magnetic fields on the neuronal differentiation of PC-12 cells.
In this study, PC-12 cells were used as a model to examine neural differentiation. These cells differentiate and change their morphology into neuron-like cells by stimulation with the nerve growth factor. A better understanding of neural differentiation, including proteomic analyses, may lead to new therapeutic options in the treatment of neurodegenerative diseases.
To induce neuronal differentiation of the cells, nerve growth factor was added to the media at a concentration of 50 ng/ml. The following groups were examined: 1.) control group, 2.) addition of nerve growth factor and 3.) addition of nerve growth factor + magnetic field exposure.
周波数 | 50 Hz |
---|---|
タイプ |
|
波形 |
|
ばく露時間 | continuous for 1, 3, or 5 days |
ばく露の発生源/構造 | |
---|---|
ばく露装置の詳細 | two coils (17.5 cm radius each) arranged in a Helmholtz configuration oriented to produce a vertical magnetic field; distance between the coils 17.5 cm; number of loops 1000 |
測定量 | 値 | 種別 | Method | Mass | 備考 |
---|---|---|---|---|---|
磁束密度 | 1 mT | effective value | 測定値 | - | - |
Results of the magnetic field exposure group treated with nerve growth factor (group 3) were compared to the results of the group treated with nerve growth factor alone (group 2).
After 5 days, magnetic field exposed cell culture had significantly longer neurite outgrowths and more neurite bearing cells, while the cell proliferation was significantly decreased, which is associated with an enhancement in differentiation.
A magnetic field exposure significantly altered the gene expression and protein expression related to differentiation. The two-dimensional gel electrophoresis showed a different protein expression in magnetic field exposed cell cultures. Therefore, six of these differentially expressed proteins were identified via mass spectrometry. The identified proteins are known to be involved in cell differentiation processes or are associated with human brain disorders (e.g. neurodegenerative diseases).
The authors conclude that exposure to extremely low frequency magnetic fields promoted the differentiation in PC-12 cells and that these fields might represent a potential therapeutic option in the treatment of neurodegenerative diseases.
このウェブサイトはクッキー(Cookies)を使って、最善のブラウジングエクスペリエンスを提供しています。あなたがこのウェブサイトを継続して使用することで、私たちがクッキーを使用することを許可することになります。