Frisch geschlüpfte Insekten wurden auf 12 identische Gruppen von je 10 Männchen und 10 Weibchen aufgeteilt und kontinuierlich während der ersten 5 Tage ihres erwachsenen Lebens bei 3 verschiedenen Stärken exponiert oder schein-exponiert. Die ersten 48 Stunden wurden die Männchen und Weibchen in verschiedenen Glasröhrchen gehalten. Nach diesen 48 Stunden, wenn Weibchen und Männchen voll geschlechtsreif waren, wurden sie für 72 Stunden in einem anderen Glasröhrchen zusammengesetzt, wo sie sich paaren und Eier legen konnten. Nach diesen 5 Tagen wurden die Fliegen aus dem Röhrchen entfernt. Die Weibchen wurden seziert und die Ovarien auf DNA-Schäden hin untersucht. Die Röhrchen mit den sich entwickelnden Embryonen wurden für weitere 6 Tage in einem Kultivierungsraum ohne Expositioninkubiert.
glass tubes with flys were put in the centre of the air cores of the coils, suspended by nylon strings
Aufbau
two nearly identical cylindrical coils were used; both coils had a length of 0.25 m, a radius of 7.5 x 10-2 m and a diameter of insulated wire of 2 x 10-3 m; number of turns in each coil = 330; in the first coil, the turns were parallel and in the same direction, thus generating a magnetic field; in the second coil, half of the turns were antiparallel (parallel but in opposite direction), so that the magnetic field (and the magnetically induced electric field) in a region of about 12 cm width around the centre of the coil was zero (used for sham exposure)
after it was checked by preliminary experiments that the sequence (mutual position) of the two coils did not affect the outcome of the experiments, their positions were always the same during all experiments, at a certain place of the laboratory with the minimum stray 50-Hz fields and in at least 2 m distance between each other so that the fields of the "exposure coil" did not affect the "sham exposure coil"
Valadez-Lira JA et al.
(2017):
Alterations of Immune Parameters on Trichoplusia ni (Lepidoptera: Noctuidae) Larvae Exposed to Extremely Low-Frequency Electromagnetic Fields
Dimitrijevic D et al.
(2014):
Extremely low frequency magnetic field (50 Hz, 0.5 mT) modifies fitness components and locomotor activity of Drosophila subobscura
Li SS et al.
(2013):
Gene expression and reproductive abilities of male Drosophila melanogaster subjected to ELF-EMF exposure
Gonet B et al.
(2009):
Effects of extremely low-frequency magnetic fields on the oviposition of Drosophila melanogaster over three generations
Krylov VV
(2008):
Impact of alternating electromagnetic field of ultralow and low frequencies upon survival, development, and production parameters in daphnia magna straus. (Crustacea, cladocera)
Ishay JS et al.
(2007):
Exposure to an additional alternating magnetic field affects comb building by worker hornets
Stanojevic V et al.
(2005):
Effects of Extremely Low Frequency (50 Hz) Magnetic Field on Development Dynamics of the Housefly (Musca domestica L.)
Mirabolghasemi G et al.
(2002):
Developmental changes in Drosophila melanogaster following exposure to alternating electromagnetic fields
Graham JH et al.
(2000):
Growth and developmental stability of Drosophila melanogaster in low frequency magnetic fields
Kikuchi T et al.
(1998):
Multigeneration exposure test of Drosophila melanogaster to ELF magnetic fields
Nguyen P et al.
(1995):
Exposure of Drosophila melanogaster embryonic cell cultures to 60-Hz sinusoidal magnetic fields: assessment of potential teratogenic effects
Ma TH et al.
(1993):
Effect of the extremely low frequency (ELF) electromagnetic field (EMF) on developing embryos of the fruit fly (Drosophila melanogaster L.)
Walters E et al.
(1987):
Test for the effects of 60-Hz magnetic fields on fecundity and development in Drosophila
Um diese Webseite für Sie optimal zu gestalten und fortlaufend verbessern zu können, verwenden wir Cookies. Durch die weitere Nutzung der Webseite stimmen Sie der Verwendung von Cookies zu.