Studientyp:
Medizinische/biologische Studie
(experimentelle Studie)
Effects of Low-Intensity Electromagnetic Fields on the Proliferation and Differentiation of Cultured Mouse Bone Marrow Stromal Stem Cells
med./bio.
[Wirkungen schwacher elektromagnetischer Felder auf die Proliferation und Differenzierung kultivierter mesenchymaler Knochenmarks-Stammzellen der Maus]
Asadian N et al.
(2021):
EMF frequency dependent differentiation of rat bone marrow mesenchymal stem cells to astrocyte cells
Samiei M et al.
(2020):
The effect of electromagnetic fields on survival and proliferation rate of dental pulp stem cells
Özgün A et al.
(2019):
Extremely low frequency magnetic field induces human neuronal differentiation through NMDA receptor activation
Koziorowska A et al.
(2017):
Electromagnetic field of extremely low frequency (60Hz and 120Hz) effects the cell cycle progression and the metabolic activity of the anterior pituitary gland cells in vitro
Jadidi M et al.
(2016):
Mesenchymal stem cells that located in the electromagnetic fields improves rat model of Parkinson's disease
Xie YF et al.
(2016):
Pulsed electromagnetic fields stimulate osteogenic differentiation and maturation of osteoblasts by upregulating the expression of BMPRII localized at the base of primary cilium
Mascotte-Cruz JU et al.
(2016):
Combined effects of flow-induced shear stress and electromagnetic field on neural differentiation of mesenchymal stem cells
Yan JL et al.
(2015):
Pulsed electromagnetic fields promote osteoblast mineralization and maturation needing the existence of primary cilia
Ledda M et al.
(2015):
Nonpulsed sinusoidal electromagnetic fields as a noninvasive strategy in bone repair: the effect on human mesenchymal stem cell osteogenic differentiation
Shahbazi-Gahrouei D et al.
(2014):
Effect of extremely low-frequency (50 Hz) field on proliferation rate of human adipose-derived mesenchymal stem cells
Huang CY et al.
(2014):
Distinct Epidermal Keratinocytes Respond to Extremely Low-Frequency Electromagnetic Fields Differently
Huang CY et al.
(2014):
Extremely Low-Frequency Electromagnetic Fields Cause G1 Phase Arrest through the Activation of the ATM-Chk2-p21 Pathway
Yu JZ et al.
(2014):
Osteogenic differentiation of bone mesenchymal stem cells regulated by osteoblasts under EMF exposure in a co-culture system
Razavi S et al.
(2014):
Extremely low-frequency electromagnetic field influences the survival and proliferation effect of human adipose derived stem cells
Bai WF et al.
(2013):
Fifty-Hertz electromagnetic fields facilitate the induction of rat bone mesenchymal stromal cells to differentiate into functional neurons
Kim HJ et al.
(2013):
Extremely low-frequency electromagnetic fields induce neural differentiation in bone marrow derived mesenchymal stem cells
Liu C et al.
(2013):
Effect of 1 mT Sinusoidal Electromagnetic Fields on Proliferation and Osteogenic Differentiation of Rat Bone Marrow Mesenchymal Stromal Cells
Park JE et al.
(2013):
Electromagnetic fields induce neural differentiation of human bone marrow derived mesenchymal stem cells via ROS mediated EGFR activation
Cho H et al.
(2012):
Neural stimulation on human bone marrow-derived mesenchymal stem cells by extremely low frequency electromagnetic fields
Celik MS et al.
(2012):
The effects of long-term exposure to extremely low-frequency magnetic fields on bone formation in ovariectomized rats
Cheng G et al.
(2011):
Sinusoidal electromagnetic field stimulates rat osteoblast differentiation and maturation via activation of NO-cGMP-PKG pathway
Yan J et al.
(2010):
Effects of extremely low-frequency magnetic field on growth and differentiation of human mesenchymal stem cells
Yang Y et al.
(2010):
EMF acts on rat bone marrow mesenchymal stem cells to promote differentiation to osteoblasts and to inhibit differentiation to adipocytes
Sun LY et al.
(2009):
Effect of pulsed electromagnetic field on the proliferation and differentiation potential of human bone marrow mesenchymal stem cells
Wei Y et al.
(2008):
Effects of extremely low-frequency-pulsed electromagnetic field on different-derived osteoblast-like cells
Yang W et al.
(2007):
[Effects of extremely low frequency pulsed electromagnetic field on different-derived osteoblast-like cells]
Wu H et al.
(2005):
Effect of electromagnetic fields on proliferation and differentiation of cultured mouse bone marrow mesenchymal stem cells
Zhao W et al.
(2005):
[Preliminary research on the proliferation and differentiation of rat bone marrow mesenchymal stem cells with exposure to 50 Hz magnetic fields]
Chang WH et al.
(2004):
Effect of pulse-burst electromagnetic field stimulation on osteoblast cell activities
Bodamyali T et al.
(1998):
Pulsed electromagnetic fields simultaneously induce osteogenesis and upregulate transcription of bone morphogenetic proteins 2 and 4 in rat osteoblasts in vitro
Bilotta TW et al.
(1994):
Electromagnetic fields in the treatment of postmenopausal osteoporosis: an experimental study conducted by densitometric, dry ash weight and metabolic analysis of bone tissue
Um diese Webseite für Sie optimal zu gestalten und fortlaufend verbessern zu können, verwenden wir Cookies. Durch die weitere Nutzung der Webseite stimmen Sie der Verwendung von Cookies zu.