Helmholtz coils with a radius of 2.5 cm and equal spacing (oriented vertically in order to produce a horizontal field almost perpendicular to the geomagnetic field); samples were placed in the space between the coils; temperature between the coils was coincident with the room temperature of 21±1°C
Struktur der Aminosäuren L-Glutamin und L-Phenylalanin (ATR-Infrarotspektroskopie); Säure-Base-Gleichgewicht (Verhältnis der Stärke deprotonierter und protonierter Spezies)
Calabro E
(2016):
Competition between hydrogen bonding and protein aggregation in neuronal-like cells under exposure to 50 Hz magnetic field
De Ninno A et al.
(2011):
On the Effect of Weak Magnetic Field on Solutions of Glutamic Acid: the Function of Water
De Ninno A et al.
(2011):
Deprotonation of glutamic acid induced by weak magnetic field: An FTIR-ATR study
Calabro E et al.
(2011):
Static and 50 Hz Electromagnetic Fields Effects on Human Neuronal-Like Cells Vibration Bands in the Mid-Infrared Region
Alberto D et al.
(2008):
Effects of static and low-frequency alternating magnetic fields on the ionic electrolytic currents of glutamic acid aqueous solutions
Alberto D et al.
(2008):
Effects of extremely low-frequency magnetic fields on l-glutamic acid aqueous solutions at 20, 40, and 60 microT static magnetic fields
Pazur A
(2004):
Characterisation of weak magnetic field effects in an aqueous glutamic acid solution by nonlinear dielectric spectroscopy and voltammetry
Zhadin MN et al.
(1998):
Combined action of static and alternating magnetic fields on ionic current in aqueous glutamic acid solution
Zhadin MN
(1998):
Combined action of static and alternating magnetic fields on ion motion in a macromolecule: theoretical aspects
Um diese Webseite für Sie optimal zu gestalten und fortlaufend verbessern zu können, verwenden wir Cookies. Durch die weitere Nutzung der Webseite stimmen Sie der Verwendung von Cookies zu.