Studientyp:
Medizinische/biologische Studie
(experimentelle Studie)
Determination of the effects of extremely low frequency electromagnetic fields on the percentages of peripheral blood leukocytes and histology of lymphoid organs of the mouse
med./bio.
[Bestimmung der Wirkung von extrem niederfrequenten elektromagnetischen Feldern auf den Prozentsatz peripherer Blut-Leukozyten und auf die Histologie der Lymphorgane der Maus]
Von:
Cicekcibasi AE, Celik I, Salbacak A, Ozkan Y, Okudan N, Buyukmumcu M
Veröffentlicht in: Saudi Med J 2008; 29 (1): 36-41
Insgesamt wurden 120 Mäuse (60 Männchen und 60 Weibchen) auf 6 Gruppen (20 pro Gruppe) aufgeteilt und die experimentellen Gruppen bei den magnetischen Flussdichten von 1, 2, 3, 4 und 5 µT für 40 Tage exponiert.
six solenoids, each with a plastic core of 32 cm diameter and 300 turns of copper wire, cylindrical plastic cage with a diameter of 30 cm placed in the center of each solenoid
Mevissen M et al.
(1996):
Exposure of DMBA-treated female rats in a 50-Hz, 50 microTesla magnetic field: effects on mammary tumor growth, melatonin levels, and T lymphocyte activation
Mahaki H et al.
(2019):
The effects of extremely low-frequency electromagnetic fields on c-Maf, STAT6, and RORα expressions in spleen and thymus of rat
Sobhanifard M et al.
(2019):
Effect of Extremely Low Frequency Electromagnetic Fields on Expression of T-bet and GATA-3 Genes and Serum Interferon-γ and Interleukin-4
Wyszkowska J et al.
(2018):
Evaluation of the influence of in vivo exposure to extremely low-frequency magnetic fields on the plasma levels of pro-inflammatory cytokines in rats
Mahdavinejad L et al.
(2018):
Extremely Low Frequency Electromagnetic Fields Decrease Serum Levels of Interleukin-17, Transforming Growth Factor-β and Downregulate Foxp3 Expression in the Spleen
Zhang H et al.
(2016):
Protective effect of procyanidins extracted from the lotus seedpod on immune function injury induced by extremely low frequency electromagnetic field
Luo X et al.
(2016):
Occupational exposure to 50 Hz magnetic fields does not alter responses of inflammatory genes and activation of splenic lymphocytes in mice
Salehi I et al.
(2013):
Exposure of rats to extremely low-frequency electromagnetic fields (ELF-EMF) alters cytokines production
Bayat PD et al.
(2011):
Effect of exposure to extremely low electro-magnetic field during prenatal period on mice spleen
Okudan N et al.
(2010):
Effects of long-term 50 Hz magnetic field exposure on the micro nucleated polychromatic erythrocyte and blood lymphocyte frequency and argyrophilic nucleolar organizer regions in lymphocytes of mice
Cakir DU et al.
(2009):
Alterations of Hematological Variations in Rats Exposed to Extremely Low Frequency Magnetic Fields (50Hz)
Quaglino D et al.
(2004):
The effect on rat thymocytes of the simultaneous in vivo exposure to 50-Hz electric and magnetic field and to continuous light
Ushiyama A et al.
(2004):
Subchronic effects on leukocyte-endothelial interactions in mice by whole body exposure to extremely low frequency electromagnetic fields
Ikeda K et al.
(2003):
No effects of extremely low frequency magnetic fields found on cytotoxic activities and cytokine production of human peripheral blood mononuclear cells in vitro
Arafa HM et al.
(2003):
Immunomodulatory effects of L-carnitine and q10 in mouse spleen exposed to low-frequency high-intensity magnetic field
Cabrales LB et al.
(2001):
ELF Magnetic Field Effects On Some Hematological And Biochemical Parameters Of Peripheral Blood In Mice
Dasdag S et al.
(2001):
Effects of microwaves and ELF magnetic field on the phagocytic activity of variously treated rat macrophages
Tuschl H et al.
(2000):
Occupational exposure to static, ELF, VF and VLF magnetic fields and immune parameters
Felaco M et al.
(1999):
Impact of extremely low frequency electromagnetic fields on CD4 expression in peripheral blood mononuclear cells
Svedenstal BM et al.
(1999):
DNA damage, cell kinetics and ODC activities studied in CBA mice exposed to electromagnetic fields generated by transmission lines
Häußler M et al.
(1999):
Exposure of rats to a 50-Hz, 100 µTesla magnetic field does not affect the ex vivo production of interleukins by activated T or B lymphocytes
Mevissen M et al.
(1998):
Complex effects of long-term 50 Hz magnetic field exposure in vivo on immune functions in female Sprague-Dawley rats depend on duration of exposure
Tremblay L et al.
(1996):
Differential modulation of natural and adaptive immunity in Fischer rats exposed for 6 weeks to 60 Hz linear sinusoidal continuous-wave magnetic fields
House RV et al.
(1996):
Immune function and host defense in rodents exposed to 60-Hz magnetic fields
Ramoni C et al.
(1995):
Human natural killer cytotoxic activity is not affected by in vitro exposure to 50-Hz sinusoidal magnetic fields
de Seze R et al.
(1993):
Effects of time-varying uniform magnetic fields on natural killer cell activity and antibody response in mice
Stuchly MA et al.
(1991):
Cancer promotion in a mouse-skin model by a 60-Hz magnetic field: I. Experimental design and exposure system
McLean JR et al.
(1991):
Cancer promotion in a mouse-skin model by a 60-Hz magnetic field: II. Tumor development and immune response
Bellossi A et al.
(1989):
Effect of a pulsed magnetic field on healthy mice: a study of the weight of the thymus
Oroza MA et al.
(1987):
Hormonal, hematological and serum chemistry effects of weak pulsed electromagnetic fields on rats
Fischer G et al.
(1987):
Einfluß eines magnetischen Wechselfeldes auf die Entwicklung des Carrageenan-Pfotenödems der Ratte
Um diese Webseite für Sie optimal zu gestalten und fortlaufend verbessern zu können, verwenden wir Cookies. Durch die weitere Nutzung der Webseite stimmen Sie der Verwendung von Cookies zu.