この研究は、野生種のウマの脾臓のフェリチン(室温超常磁性を有する天然のフェリハイドライト・ナノ粒子をもつ)の性質を調べ、それに対する無線周波電磁界の影響を調べた。まず、このナノ粒子の低磁界中での磁化率とネール緩和時間を測定し、報告している。次に、無線周波磁界にばく露した場合、超常磁性ナノ粒子は磁化と印加磁界との時間差によって内部エネルギーを増加させ、このエネルギーは、周囲のペプチドのかご状構造へと拡散していき、分子動態及びプロテイン機能を変化させると著者は考えて、ラマン分光法で計測した結果、1 MHz、30 μTの磁界下で低エネルギー振動状態の拡大が確認されたと報告している。また、ばく露終了から2時間の時点でタンパク質の鉄取り込み速度は約20%減少したと述べている。
The detailed summary of this article is not available in your language or incomplete. Would you like to see a complete translation of the summary? Then please contact us →
To study the effects of radiofrequency magnetic fields on ferritin and the underlying mechanisms. Additionally, the aim of the study was to determine, whether the effects of such fields as described in a previous study (i.e. decrease in iron chelation following exposure, see Céspedes and Ueno 2009) are due to power dissipation of the ferrihydrite nanoparticles under exposure to the radiofrequency field.
The iron cage protein ferritin is an obvious candidate to study the effects of radiofrequency magnetic fields at the molecular scale, because it has the highest net magnetic moment of all proteins and plays an essential biological role, being present in organisms from bacteria to humans. Ferritin oxidizes the harmful Fe2+ ions and stores them in the cavity, forming a superparamagnetic ferrihydrite nanoparticle with up to 4,500 iron ions. Apoferritin solutions (protein without inner ferrihydrite nanoparticle) were also investigated.
周波数 | 1 MHz |
---|---|
タイプ |
|
ばく露時間 | continuous for 7 h |
ばく露の発生源/構造 | |
---|---|
Distance between exposed object and exposure source | 1 m |
ばく露装置の詳細 | two sets of coils placed above and below samples; coils 9 cm in diameter and 1 cm in height spaced by 5 cm. |
測定量 | 値 | 種別 | Method | Mass | 備考 |
---|---|---|---|---|---|
磁束密度 | 30 µT | maximum | 計算値 | - | - |
周波数 | 50 kHz–2 MHz |
---|---|
タイプ |
|
ばく露の発生源/構造 |
|
---|
測定量 | 値 | 種別 | Method | Mass | 備考 |
---|---|---|---|---|---|
磁束密度 | 15 µT | maximum | 計算値 | - | - |
The data showed that exposure to a radiofrequency magnetic field affected the ability of native ferritin to uptake iron. However, the radiofrequency magnetic field had no effect on ferritin without inner superparamagnetic nanoparticle (i.e. apoferritin).
The superparamagnetic nanoparticles inside of ferritin increase their internal energy when exposed to radiofrequency magnetic fields due to the lag between magnetization and applied field. The energy is dissipated to the surrounding "protein cage", altering the molecular dynamics and functioning of the protein. This leads to an increased population of low energy vibrational states under a magnetic field of 30 µT at 1 MHz (as measured via Raman spectroscopy). After 2 h of exposure, the proteins have a reduced iron intake rate of about 20%.
In conclusion, the data open a new path for the study of non-thermal bioeffects of radiofrequency magnetic fields at the molecular scale. The authors hypothesize that the effect of the radiofrequency magnetic field on ferritin will depend not only on the applied field but also on the magnetic properties of the ferrihydrite nanoparticle inside ferritin.
このウェブサイトはクッキー(Cookies)を使って、最善のブラウジングエクスペリエンスを提供しています。あなたがこのウェブサイトを継続して使用することで、私たちがクッキーを使用することを許可することになります。