この研究は、身体と共振する周波数の電磁界ばく露によって生じる深部体温の上昇について、動物モデルで、反応が変化する閾値および体温調節による補償の定常状態を検討した。成獣雄リスザルに、寒冷な無反射チャンバ内でアンテナの遠方界で450または2450 MHz連続波(E偏波)のばく露を10分間または90分間与えた。全身SARは、0-6 W/kg(450 MHz)および0-9 W/kg(2,450 MHz)であった。直腸と皮膚の温度、代謝による熱産生、蒸散による熱損失を連続モニタした。その結果、寒冷環境での短時間のばく露中では、代謝熱の産生低下はSAR値に直接比例したが、2450MHzエネルギーの方が共振周波数より効果的な刺激となった;定常状態では、深部体温の規則的上昇が共振周波数で見られた、などを報告している。
The detailed summary of this article is not available in your language or incomplete. Would you like to see a complete translation of the summary? Then please contact us →
The question was tested whether the thermoregulatory system might somehow be overwhelmed by exposures at resonance at higher whole-body SARs, even in environments conducive to efficient heat dissipation.
Hyperthermia has been examined in an animal model to determine both the thresholds for response change and the steady-state thermoregulatory compensation for body heating during exposure at resonant (450 MHz) and supra-resonant (2450 MHz, data previously collected) frequencies.
ばく露 | パラメータ |
---|---|
ばく露1:
450 MHz
Modulation type:
CW
ばく露時間:
repeated exposures for 5 x 10 min separated by 20-min intervals
|
|
ばく露2:
450 MHz
Modulation type:
CW
ばく露時間:
continuous for 90 min
|
|
ばく露3:
2,450 MHz
Modulation type:
CW
ばく露時間:
repeated exposures for 5 x 10 min separated by re-equilibration intervals
|
|
ばく露4:
2,450 MHz
Modulation type:
CW
ばく露時間:
continuous for 90 min
|
|
周波数 | 450 MHz |
---|---|
タイプ |
|
特性 |
|
ばく露時間 | repeated exposures for 5 x 10 min separated by 20-min intervals |
Modulation type | CW |
---|
ばく露の発生源/構造 | |
---|---|
Distance between exposed object and exposure source | 130 cm |
チャンバの詳細 | The anechoic chamber was 2.44 m x 2.44 m x 3.05 m. The half-wave dipole antenna was mounted in a 90° corner reflector. |
ばく露装置の詳細 | Monkeys were restrained in a chair inside a ventilated Styrofoam test compartment (30 cm x 33 cm x 78 cm). The electric field vector of the incident plane wave was aligned with the long axis of the animal's body (E-polarization). |
Sham exposure | A sham exposure was conducted. |
Additional information | After 90 min of equilibration, the monkey received five 10-min MW exposures of increasing power density separated by 20-min intervals. Three such sessions were conducted on each monkey at each ambient temperature (15, 20, 25, or 30 °C). |
周波数 | 450 MHz |
---|---|
タイプ |
|
特性 |
|
ばく露時間 | continuous for 90 min |
Modulation type | CW |
---|
ばく露の発生源/構造 |
|
---|---|
Sham exposure | A sham exposure was conducted. |
Additional information | Following equilibration, the monkey was exposed to a single power density for 90 min at 20 °C. Three sessions were conducted on each monkey at each power density. |
周波数 | 2,450 MHz |
---|---|
タイプ |
|
特性 |
|
ばく露時間 | repeated exposures for 5 x 10 min separated by re-equilibration intervals |
Modulation type | CW |
---|
ばく露の発生源/構造 |
|
---|---|
Additional information | Earlier data collected on comparable groups of animals, exposed to 2,450-MHz CW fields in environments similar to E1 [Adair and Adams, 1982; Adair, 1987] was compared to data from the present experiments. |
測定量 | 値 | 種別 | Method | Mass | 備考 |
---|---|---|---|---|---|
SAR | 3.75 W/kg | mean | 測定値 | whole body | 0.5-3.75 W/kg |
周波数 | 2,450 MHz |
---|---|
タイプ |
|
特性 |
|
ばく露時間 | continuous for 90 min |
Additional information | Adair ER (1987): Microwave challenges to the thermoregulatory system. USAF Report SAM-TR-87-7, August. Brooks AFB, TX: School of Aerospace Medicine. |
Modulation type | CW |
---|
ばく露の発生源/構造 |
|
---|---|
Additional information | Earlier 2,450-MHz data collected under protocols identical to E2 [Adair, 1987] was compared to data from the present experiments. |
測定量 | 値 | 種別 | Method | Mass | 備考 |
---|---|---|---|---|---|
SAR | 9 W/kg | mean | 測定値 | whole body | 0.5-9 W/kg |
The reduction of metabolic heat production was directly proportional to the SAR during brief radiofrequency exposures in the cold. 2450 MHz energy was a more efficient stimulus than was 450 MHz. In the steady state, a regulated increase in deep body temperature accompanied exposure at resonance, not unlike that which occurs during exercise. The results indicate that temperature changes in the skin are the primary source of the neural signal for a change in physiological interaction processes during radiofrequency exposure in the cold.
このウェブサイトはクッキー(Cookies)を使って、最善のブラウジングエクスペリエンスを提供しています。あなたがこのウェブサイトを継続して使用することで、私たちがクッキーを使用することを許可することになります。