Two identical 7 x 7-m rooms for RF and sham exposure were lined with MW-absorbing material (-30 dB at 500 MHz). Four parallel plate waveguides per room were stacked one above the other. Each waveguide consisted of two circular, parallel plates of 3.66-m diameter and 0.47-m separation with a slotted-cylinder feed antenna at the center.
Setup
Fifty mice were positioned around the circumference of each waveguide, individually housed in transparent polycarbonate cages with a height of 12.7 cm and a floor space of 206 cm².
Paulraj R et al.
(2011):
Effects of low level microwave radiation on carcinogenesis in Swiss Albino mice
Saran A et al.
(2007):
Effects of exposure of newborn patched1 heterozygous mice to GSM, 900 MHz
Smith P et al.
(2007):
GSM and DCS Wireless Communication Signals: Combined Chronic Toxicity/Carcinogenicity Study in the Wistar Rat
Oberto G et al.
(2007):
Carcinogenicity Study of 217 Hz Pulsed 900 MHz Electromagnetic Fields in Pim1 Transgenic Mice
Sommer AM et al.
(2007):
Lymphoma Development in Mice Chronically Exposed to UMTS-Modulated Radiofrequency Electromagnetic Fields
Huang TQ et al.
(2005):
Effect of radiofrequency radiation exposure on mouse skin tumorigenesis initiated by 7,12-dimethybenz[alpha]anthracene
Shirai T et al.
(2005):
Chronic exposure to a 1.439 GHz electromagnetic field used for cellular phones does not promote N-ethylnitrosourea induced central nervous system tumors in F344 rats
Sommer AM et al.
(2004):
No effects of GSM-modulated 900 MHz electromagnetic fields on survival rate and spontaneous development of lymphoma in female AKR/J mice
LaRegina MC et al.
(2003):
The Effect of Chronic Exposure to 835.62 MHz FDMA or 847.74 MHz CDMA Radiofrequency Radiation on the Incidence of Spontaneous Tumors in Rats
Heikkinen P et al.
(2003):
Effects of mobile phone radiation on UV-induced skin tumourigenesis in ornithine decarboxylase transgenic and non-transgenic mice
Bartsch H et al.
(2002):
Chronic exposure to a GSM-like signal (mobile phone) does not stimulate the development of DMBA-induced mammary tumors in rats: results of three consecutive studies
Imaida K et al.
(2001):
Lack of promotion of 7,12-dimethylbenz[a]anthracene-initiated mouse skin carcinogenesis by 1.5 GHz electromagnetic near fields
Zook BC et al.
(2001):
The effects of 860 MHz radiofrequency radiation on the induction or promotion of brain tumors and other neoplasms in rats
Adey WR et al.
(2000):
Spontaneous and nitrosourea-induced primary tumors of the central nervous system in Fischer 344 rats exposed to frequency-modulated microwave fields
Adey WR et al.
(1999):
Spontaneous and nitrosourea-induced primary tumors of the central nervous system in Fischer 344 rats chronically exposed to 836 MHz modulated microwaves
Higashikubo R et al.
(1999):
Radiofrequency electromagnetic fields have no effect on the in vivo proliferation of the 9L brain tumor
Frei MR et al.
(1998):
Chronic, low-level (1.0 W/kg) exposure of mice prone to mammary cancer to 2450 MHz microwaves
Frei MR et al.
(1998):
Chronic exposure of cancer-prone mice to low-level 2450 MHz radiofrequency radiation
Imaida K et al.
(1998):
The 1.5 GHz electromagnetic near-field used for cellular phones does not promote rat liver carcinogenesis in a medium-term liver bioassay
Repacholi MH et al.
(1997):
Lymphomas in Eµ-Pim1 transgenic mice exposed to pulsed 900 MHz electromagnetic fields
Salford L et al.
(1997):
Brain tumour development in rats exposed to electromagnetic fields used in wireless cellular communication
Wu RY et al.
(1994):
Effects of 2.45-GHz microwave radiation and phorbol ester 12-O-tetradecanoylphorbol-13-acetate on dimethylhydrazine-induced colon cancer in mice
This website uses cookies to provide you the best browsing experience. By continuing to use this website you accept our use of cookies.