Lekovic MH et al.
(2020):
Extremely low-frequency electromagnetic field induces a change in proliferative capacity and redox homeostasis of human lung fibroblast cell line MRC-5
Naghibzadeh M et al.
(2020):
The effect of electromagnetic field on decreasing and increasing of the growth and proliferation rate of dermal fibroblast cell
Samiei M et al.
(2020):
The effect of electromagnetic fields on survival and proliferation rate of dental pulp stem cells
Martínez MA et al.
(2019):
Involvement of the EGF Receptor in MAPK Signaling Activation by a 50 Hz Magnetic Field in Human Neuroblastoma Cells
Song K et al.
(2018):
A 60 Hz uniform electromagnetic field promotes human cell proliferation by decreasing intracellular reactive oxygen species levels
Koziorowska A et al.
(2017):
The impact of electromagnetic fields with frequency of 50 Hz on metabolic activity of cells in vitro
Koziorowska A et al.
(2017):
Electromagnetic field of extremely low frequency (60Hz and 120Hz) effects the cell cycle progression and the metabolic activity of the anterior pituitary gland cells in vitro
Zeng Y et al.
(2017):
Effects of Single and Repeated Exposure to a 50-Hz 2-mT Electromagnetic Field on Primary Cultured Hippocampal Neurons
Restrepo AF et al.
(2016):
Effects of extremely low frequency electromagnetic fields on in-vitro cellular cultures HeLa and CHO
Koziorowska A et al.
(2016):
The impact of electromagnetic field at a frequency of 50 Hz and a magnetic induction of 2.5 mT on viability of pineal cells in vitro
Pasi F et al.
(2016):
Effects of extremely low-frequency magnetotherapy on proliferation of human dermal fibroblasts
Martinez MA et al.
(2016):
Power Frequency Magnetic Fields Affect the p38 MAPK-Mediated Regulation of NB69 Cell Proliferation Implication of Free Radicals
Lee HC et al.
(2015):
Effect of extremely low frequency magnetic fields on cell proliferation and gene expression
An GZ et al.
(2015):
Effects of long-term 50 Hz power-line frequency electromagnetic field on cell behavior in Balb/c 3T3 cells
Huang CY et al.
(2014):
Extremely Low-Frequency Electromagnetic Fields Cause G1 Phase Arrest through the Activation of the ATM-Chk2-p21 Pathway
Razavi S et al.
(2014):
Extremely low-frequency electromagnetic field influences the survival and proliferation effect of human adipose derived stem cells
Shahbazi-Gahrouei D et al.
(2014):
Effect of extremely low-frequency (50 Hz) field on proliferation rate of human adipose-derived mesenchymal stem cells
Bae JE et al.
(2013):
Electromagnetic field-induced converse cell growth during a long-term observation
Zhang M et al.
(2013):
Effects of low frequency electromagnetic field on proliferation of human epidermal stem cells: An in vitro study
Li X et al.
(2012):
Effects of 50 Hz pulsed electromagnetic fields on the growth and cell cycle arrest of mesenchymal stem cells: an in vitro study
Loberg LI et al.
(2000):
Cell viability and growth in a battery of human breast cancer cell lines exposed to 60 Hz magnetic fields
Cridland NA et al.
(1999):
50 Hz magnetic field exposure alters onset of S-phase in normal human fibroblasts
This website uses cookies to provide you the best browsing experience. By continuing to use this website you accept our use of cookies.