This in vitro study was performed to investigate the effects of radiofrequency electromagnetic field on bacterial mutations and hypoxanthine-guanine phosphoribosyl transferase (HPRT) gene mutation in mammalian cells.
The hypoxanthine-guanine phosphoribosyl transferase (HPRT) is an enzyme in the purine (for example guanine) synthesis pathway. HPRT-negative cells are not able to use guanine for GTP synthesis und thus, they have to synthesize the base de novo. Using the guanine analog 6-thioguanine HPRT-positive cells use 6-thioguanine for nucleotide synthesis. However, integration of 6-thioguanine leads to DNA and RNA damage and it is lethal for these cells. In contrast, HPRT-negative cells are not able to utilize 6-thioguanine and survive.
The HPRT gene mutation assay is a well-established mutagenicity assay based on the selection of clones resistant to the purine analog 6-thioguanine. I.e. for determination of the induction of 6-thioguanine resistant mutation in the HPRT gene exposed cells are plated in a medium containing 6-thioguanine.
Experiments were performed with different specific absorption rates.
The frequency of HPRT gene mutations were compared between: 1.) sham exposed, 2.) radiofrequency electromagnetic field exposed, 3.) co-exposed (radiofrequency electromagnetic field exposure plus bleomycin treatment) and 4.) heat (39°, 41°, 44° with or without bleomycin) treated cells.
Frequency | 2.45 GHz |
---|---|
Type | |
Exposure duration | continuous for 30 min |
Additional info | bacterial cells |
Additional info | Ames, B. N., McCann, J., and Yamazaki, E. (1975) Methods for detecting carcinogens and mutagens with the Salmonella/mammalian-microsome mutagenicity test. Mutat. Res. 31: 347-363. |
Exposure source | |
---|---|
Chamber | Details of the exposure system have been described previously [Koyama et al., 2004]. To generate standing waves, one end of the waveguide was terminated with a short-circuiting plate. Exposure was performed in an acrylic incubator with an atmosphere of humidified 95% air and 5% CO2 that was "installed into inner space of the core". |
Setup | Aliquots of 20.1 ml of the cell suspensions were seeded into a specially designed culture dish that was placed on two slits bored on the waveguide through which cells were exposed. |
Sham exposure | A sham exposure was conducted. |
Additional info | Bacterial cells were exposed according to the protocol of the pre-incubation method of the Ames test [Ames et al., 1975]. Three chemical mutagens were used as positive control. |
Measurand | Value | Type | Method | Mass | Remarks |
---|---|---|---|---|---|
SAR | 200 W/kg | - | measured | - | 5, 50, 100, 200 W/kg |
Exposure source |
|
---|---|
Sham exposure | A sham exposure was conducted. |
Additional info | As a positive control or co-mutagenic treatment, CHO-K1 cells were exposed to bleomycin for 1 h before EMF exposure. During heat treatment, cells were incubated for 2 h at 39, 41, and 44°C corresponding to the heat induction of about 50, 100, and 200 W/kg. Co-mutagenic treatment with bleomycin was also performed. |
Measurand | Value | Type | Method | Mass | Remarks |
---|---|---|---|---|---|
SAR | 200 W/kg | - | measured | - | 5, 10, 20, 50, 100, 200 W/kg |
There was no significant difference in the number of revertant colonies between sham exposed and radiofrequency electromagnetic field exposed bacterial strains.
A significant difference in the HPRT gene mutation frequency between sham exposed and electromagnetic field exposed cells was only observed at the highest specific absorption rate (200 W/kg), but not at lower ones.
The mutation frequency of co-exposed cells at 5, 10 and 20 W/kg were the same as bleomycin alone treated controls. However, co-exposure at 50, 100 and 200 W/kg resulted in a dose-dependent increase of mutation frequency.
Heat treatment revealed a significant increase in HPRT gene mutation at 44° (corresponding to the 200 W/Kg radiofrequency electromagnetic field). Combined treatment of heat (41° and 44°) and bleomycin induced significant difference in gene mutation compared to bleomycin alone treated cells. Therefore the increase of mutation frequency might be a result of a thermal effect.
This website uses cookies to provide you the best browsing experience. By continuing to use this website you accept our use of cookies.