Study type:
Medical/biological study
(experimental study)
In-vitro assessment of Jurkat T-cells response to 1966 MHz electromagnetic fields in a GTEM cell
med./bio.
By:
Moraitis N, Christopoulou M, Nikita KS, Voulgaridou GP, Anestopoulos I, Panagiotidis MI, Pappa A
Published in: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy. IEEE, 2015: pp. 2592-2595; ISBN 978-1-4244-9271-8
Duan W et al.
(2015):
Comparison of the genotoxic effects induced by 50 Hz extremely low-frequency electromagnetic fields and 1800 MHz radiofrequency electromagnetic fields in GC-2 cells
Speit G et al.
(2013):
Genotoxic effects of exposure to radiofrequency electromagnetic fields (RF-EMF) in HL-60 cells are not reproducible
Waldmann P et al.
(2013):
Influence of GSM Signals on Human Peripheral Lymphocytes: Study of Genotoxicity
Zeni O et al.
(2012):
Radiofrequency radiation at 1950 MHz (UMTS) does not affect key cellular endpoints in neuron-like PC12 cells
Belyaev I et al.
(2010):
Microwaves from Mobile Phones Inhibit 53BP1 Focus Formation in Human Stem Cells Stronger than in Differentiated Cells: Possible Mechanistic Link to Cancer Risk
Zhijian C et al.
(2010):
Impact of 1.8-GHz radiofrequency radiation (RFR) on DNA damage and repair induced by doxorubicin in human B-cell lymphoblastoid cells
Franzellitti S et al.
(2010):
Transient DNA damage induced by high-frequency electromagnetic fields (GSM 1.8GHz) in the human trophoblast HTR-8/SVneo cell line evaluated with the alkaline comet assay
Zhijian C et al.
(2009):
Influence of 1.8-GHz (GSM) radiofrequency radiation (RFR) on DNA damage and repair induced by X-rays in human leukocytes in vitro
Belyaev IY et al.
(2009):
Microwaves from UMTS/GSM mobile phones induce long-lasting inhibition of 53BP1/gamma-H2AX DNA repair foci in human lymphocytes
Huang TQ et al.
(2008):
Characterization of biological effect of 1763 MHz radiofrequency exposure on auditory hair cells
Yao K et al.
(2008):
Electromagnetic noise inhibits radiofrequency radiation-induced DNA damage and reactive oxygen species increase in human lens epithelial cells
Valbonesi P et al.
(2008):
Evaluation of HSP70 expression and DNA damage in cells of a human trophoblast cell line exposed to 1.8 GHz amplitude-modulated radiofrequency fields
Baohong W et al.
(2007):
Evaluating the combinative effects on human lymphocyte DNA damage induced by ultraviolet ray C plus 1.8 GHz microwaves using comet assay in vitro
Speit G et al.
(2007):
Genotoxic effects of exposure to radiofrequency electromagnetic fields (RF-EMF) in cultured mammalian cells are not independently reproducible
Lixia S et al.
(2006):
Effects of 1.8 GHz radiofrequency field on DNA damage and expression of heat shock protein 70 in human lens epithelial cells
Diem E et al.
(2005):
Non-thermal DNA breakage by mobile-phone radiation (1800 MHz) in human fibroblasts and in transformed GFSH-R17 rat granulosa cells in vitro
Nikolova T et al.
(2005):
Electromagnetic fields affect transcript levels of apoptosis-related genes in embryonic stem cell-derived neural progenitor cells
Baohong W et al.
(2005):
Studying the synergistic damage effects induced by 1.8 GHz radiofrequency field radiation (RFR) with four chemical mutagens on human lymphocyte DNA using comet assay in vitro
Tice RR et al.
(2002):
Genotoxicity of radiofrequency signals. I. Investigation of DNA damage and micronuclei induction in cultured human blood cells
This website uses cookies to provide you the best browsing experience. By continuing to use this website you accept our use of cookies.