Study overviews

Mobile phone related articles are

Please note that a publication can be assigned to several endpoints, i.e. the sum of publications from the individual thematic points and subpoints can be greater than the total sum of actual publications.

Experimental studies on mobile communications

1711 studies in total
  1. 747 studies
  2. 570 studies
  3. 512 studies
  4. 225 studies
  5. 205 studies
  6. 118 studies

Other

205 studies in total
  1. 124 studies
  2. 62 studies
  3. 35 studies
Authors Year Exposed system Endpoints Frequency range SAR Exposure duration Parameters
Aslan A et al. 2013 animal, rat/Wistar albino, whole body fracture healing 900 MHz 8 mW/kg 30 min/day, 5 days/week for 8 weeks mobile phone, mobile communications, RF field
Dasdag S et al. 1999 animal, rat/Wistar, whole body testicular function, histological changes of different organs 890–915 MHz 0.141 W/kg repeated daily exposure for 2 h/day for 1 month GSM, mobile communications, microwaves
Dasdag S et al. 2000 animal, rat/Wistar, whole body birth weight, blood parameters 890–915 MHz 0.155 W/kg repeated daily exposure for 3 x 1 min during 2 h/day, see add. information GSM, mobile communications, microwaves
Nakamura H et al. 2003 animal, rat/Wistar, whole body utero-placental blood flow, endocrine changes, effects on immunological system 915 MHz 0.4–2 W/kg continuous for 90 min mobile communications, mobile phone, microwaves
Esmekaya MA et al. 2010 animal, rat/Wistar, whole body effects on thyroid gland 900 MHz 1.35 W/kg continuous for 20 min./day on 21 days mobile phone, GSM, mobile communications, PW pulsed wave
Sokolovic D et al. 2012 animal, rat/Wistar, whole body locomotor activity, stress and anxiety related behavior, exploratory behavior, body mass 900 MHz 0.043–0.135 W/kg continuous for 4 h/day on 60 days mobile phone, GSM, mobile communications, microwaves, CW continuous wave, co-exposure
Bodera P et al. 2012 animal, rat/Wistar, whole body pain perception 1,500 MHz - continuous for 15 min GSM, mobile communications, RF field, PW pulsed wave, co-exposure
Bilgici B et al. 2013 animal, rat/Wistar, whole body oxidative stress in brain and serum 850–950 MHz 1.08 W/kg continuous for 1 h/day for 3 weeks mobile phone, mobile communications, co-exposure
Borzoueisileh S et al. 2022 animal, rats - 900 MHz–2.4 GHz - - mobile communications, GSM, mobile phone, W-LAN/WiFi, co-exposure, also other exposures without EMF
Mady MM et al. 2012 artifical biological membranes in aqueous solutions (phospholipids; dipalmitoylphosphatidycholine (DPPC)) structural and functional properties of liposomes 950 MHz - continuous for 1 and 2 hours mobile phone, mobile communications, RF field, microwaves
Karatas SM et al. 2021 bacterium - 1,800 MHz - - GSM, mobile communications
Sharma AB et al. 2018 bacterium, <i>Chryseobacterium Gleum, Staphylococcus spec., Pseudomonas spec., Stenotrophomonas maltophilia, Kocuria Rosea, Escherichia coli, Enterobacter cleacae</i> - - - - mobile phone base station, mobile communications
Movahedi MM et al. 2019 bacterium, <i>Pseudomonas aeruginosa</i>, <i>Staphylococcus aureus</i> - 900 MHz - - mobile communications, mobile phone
Adebayo EA et al. 2014 bacterium, Bacillus, Clostridium, Corynebacterium and Sporosarcina - - - - mobile phone base station, mobile communications, TV broadcast (VHF/UHF), Radio/TV transmitter, RF field
Peyman A et al. 2001 different tissues in dead rats (brain, skin, skull, messeter muscle, salivary glands, liver, kidney, spleen, tongue, tail) dielectric properties of rat tissues 130 MHz–10 GHz - - mobile communications, digital mobile phone, GSM, UMTS, RF field, microwaves
Weber S et al. 2008 homeopathically diluted (D30) thyroxine effects on homeopathically prepared thyroxine 50 Hz–2.45 GHz - continuous for 100 s mobile communications, microw. oven/heating device, 2.45 GHz, 50/60 Hz
Suanjak-Treidl E et al. 2006 homeopathically diluted (D30) thyroxine effects on homeopathically prepared thyroxine 900–1,800 MHz 0.8 W/kg intermittent, 5 x 20 s digital mobile phone, GSM, mobile communications
Hashemipour MS et al. 2014 human - - - - mobile phone, mobile communications
Choi SB et al. 2014 human - 1,950 MHz 1.57 W/kg - mobile phone, W-CDMA, mobile communications, personal
Vecsei Z et al. 2018 human - 1,750 MHz - - mobile communications, LTE
Nasiar N et al. 2018 human - - - - mobile communications, mobile phone, mobile phone base station, residential
de Souza FT et al. 2014 human, partial body - - - - mobile phone, mobile communications
Paredi P et al. 2001 human, partial body: head skin temperature, NO, and nasal resistence 900 MHz - 30 min GSM, mobile communications
Schmid G et al. 2005 human, partial body: head visual perception 1.97 GHz 0.37–0.63 W/kg see add. information UMTS, mobile communications
Irlenbusch L et al. 2007 human, partial body: head effects on the visual system 902.4 MHz 0.003–0.007 W/kg continuous for 30 min digital mobile phone, GSM, mobile communications
Kwon MK et al. 2012 human, partial body: head - 1,950 MHz 1.6 W/kg continuous for 32 min digital mobile phone, W-CDMA, mobile communications, microwaves
Kwon MK et al. 2012 human, partial body: head - 1,950 MHz 1.57 W/kg - mobile phone, W-CDMA, mobile communications
Akhavan-Sigari R et al. 2014 human, partial body: head relationship between <i>p53</i> expression, <i>p53</i> mutations, survival time and cell phone usage 800–1,900 MHz 0.66–1.53 W/kg repeated daily exposure of less than 3 hours mobile phone, mobile communications
Okano T et al. 2010 human, partial body: head (left ear) effects on eye (cortical processing/saccade performance) 1.95 GHz - continuous for 30 min mobile phone, mobile communications, PW pulsed wave
Terao Y et al. 2007 human, partial body: head (right ear) effects on eye (cortical processing/saccade performance) 800 MHz 0.054 W/kg continuous for 30 min digital mobile phone, TDMA, mobile communications
Lindholm H et al. 2011 human, partial body: head (right ear) head temperature 902.4 MHz 0.66–4.3 W/kg continuous for 15 min digital mobile phone, GSM, mobile communications
Atay T et al. 2009 human, partial body: iliac bone bone mineral density of Iiliac bone wings 900–1,800 MHz - 14.7 h/ day for 6.2 years (mean value) mobile communications, mobile phone
Huttunen P et al. 2012 human, whole body - 0 Hz–2,500 MHz - not specified in the article GSM, mobile communications, RF field, TV broadcast (VHF/UHF), FM broadcast (UKW)
Thorlin T et al. 2006 intact cell/cell culture cell reactivity/cell damage 906.6 MHz 3.1–54 W/kg continuous for 4, 8, and 24 h digital mobile phone, GSM, mobile communications, microwaves
Cammaerts MC et al. 2011 intact cell/cell culture, <i>Paramecium caudatum</i> swimming behaviour of <i>Paramecium caudatum</i>, different morphological and physiological parameters 900 MHz - continuous for at least 2 min, at least for four times mobile phone, GSM, mobile communications
Hirose H et al. 2008 intact cell/cell culture, BALB/3T3 cells (clone A31-1-1) malignant/neoplastic cell transformation 2.1425 GHz 80–800 mW/kg continuous for 6 weeks mobile phone base station, CDMA, mobile communications
Roti Roti JL et al. 2001 intact cell/cell culture, C3H 10T1/2 cells (derived from mouse embryo fibroblasts) neoplastic transformation 835.62 MHz 0.6 W/kg continuous for 7 or 42 days mobile communications, CDMA, FDMA
Alahmad YM et al. 2018 intact cell/cell culture, FaDu and SCC25 cells (human head and neck cancer cell lines), animal, chicken/White Leghorn (eggs) - 1,800 MHz - - mobile communications, mobile phone
Park J et al. 2018 intact cell/cell culture, HT22 (mouse hippocampus neuronal cells) and SH-SY5Y (human neuroblastoma cell line) - 837–1,950 MHz - - mobile phone, CDMA, W-CDMA, mobile communications, RF field
Ravaioli F et al. 2023 intact cell/cell culture, HeLa cells, neuroblastoma BE(2)C cells and neuroblastoma SH-SY5Y cells - 900 MHz - - mobile communications, GSM, RF field
Kang KA et al. 2014 intact cell/cell culture, NIH3T3 cells (mouse fibroblasts), U87 (human glioma cells), PC12 (rat pheochromocytoma cells), SH-SY5Y (human neuroblastoma cells) cell viability, oxidative stress 837–1,950 MHz 2 W/kg continuous for 2 hours mobile phone, CDMA, W-CDMA, mobile communications, co-exposure
Patrignoni L et al. 2024 intact cell/cell culture, human Xp6be fibroblasts and KHAT keratinocytes - 3.5 GHz - - mobile communications, 5G, also other exposures without EMF, co-exposure
Yoon SY et al. 2011 intact cell/cell culture, human scalp hair follicle preparations (of three individuals), human dermal papilla cells (hDPC), NIH3T3 cells (mouse fibroblasts), C2C12 cells (undifferentiated myoblasts and differentiated myotubes), HeLa cell line (human adenocarcinoma cell line), OSE-80PC hair growth <i>in vitro</i> and <i>ex vivo</i> 1,763 MHz 2–10 W/kg continuous for 1 h or 3 h CDMA, mobile communications, RF field
Kowalczuk C et al. 2010 intact cell/cell culture, tissue slices, cell suspensions, IMR 32 (human neuroblastoma cells), G361 (human melanoma cells), HF-19 (human fibroblasts), N2a (murine neuroblastoma cells; differentiated and non-differentiated); CHO (Chinese hamster ovary) cells demodulation ability of living cells and tissues (second harmonic generation) 880–890 MHz 2.5–10.6 mW/g < 10 minutes (typically, a second harmonic test took around 2-3 min.) mobile phone, mobile communications, RF field, CW continuous wave
Sudaryadi I et al. 2020 invertebrate, <i>Drosophila melanogaster</i> - - - - mobile communications, mobile phone, 4G
Lee KS et al. 2008 invertebrate, <i>Drosophila melanogaster</i>/<i>Oregon-R</i>, wild type, <i>Actin5C-Gal4</i>, <i>UAS-SOD1IR</i>, and <i>UAS-SOD2IR</i>, whole body survival rate of <i>Drosophila melanogaster</i> 835 MHz 1.6–4 W/kg continuous for 6, 12, 18, 24, 30, and 36 h mobile communications, mobile phone
Weisbrot D et al. 2003 invertebrate, <i>Drosophila melanogaster</i>/Oregon-R, whole body different biological effects on <i>Drosophila melanogaster</i> 1,900 MHz 1.4 W/kg repeated daily exposure, 2 times 60 min with a 4-h interval, for 10 days GSM, mobile communications
Sarapultseva EI et al. 2009 invertebrate, <i>Spirostomum ambiguum</i> spontaneous motor activity of a protozoa 1 GHz - continuous for 15 min, 30 min, 45 min, 1h, 2 hr, 3 hr, 4 hr, 6 hr, 8 hr, 10 hr mobile communications, mobile phone, low level microwaves, Radio/TV transmitter
Sarapultseva EI et al. 2011 invertebrate, <i>Spirostomum ambiguum</i> - 1 GHz - continuous for 1 min up to 11 h mobile communications, mobile phone
Molina-Montenegro MA et al. 2023 invertebrate, honey bee (<i>Apis mellifera</i>) and other pollinators - - - - mobile communications, mobile phone base station, power transmission line, magnetic field