generic UMTS (WCDMA) test signal [Ndoumbe Mbonjo Mbonjo et al., 2004] including low frequency components of 1500 Hz, simulating power control, and 8-12 Hz, simulating 30 dBpower variation due to fading
The exposure cabin was laterally shielded and lined with RF absorbing material. The exposure system used has been described in [Schmid et al., 2005].
Setup
Subjects were exposed on the left side of the head using small matched helical antennas built in a modified stereo head phone without metallic parts. They were not informed about the exposure side.
Each subject participated in three testing sessions held at the same time in the afternoon of three separate working days between 10 and 12 days apart. Each testing session consisted of the same four tests done three times under the different exposure levels (high, low, and sham). After each individual test, the participants left the exposure cabin for a standardized break of 3 min. The orders of both the tests and the exposure levels were chosen pseudo-randomly and double-blinded by the control software. Over all three sessions, the duration of exposure was approximately the same for all subjects.
The data showed that exposure to the UMTSsignal under these experimental conditions had no statisticallysignificant immediate effect on attention or reaction time. There were no significant differences between the test parameters under the three different exposure conditions in any of the four tests performed. As in the present study UMTSexposure was applied, the data cannot be easily compared with earlier studies investigating GSMexposure.
Malek F et al.
(2015):
Effect of short-term mobile phone base station exposure on cognitive performance, body temperature, heart rate and blood pressure of Malaysians
Schmid MR et al.
(2012):
Sleep EEG alterations: effects of different pulse-modulated radio frequency electromagnetic fields
Sauter C et al.
(2011):
Effects of exposure to electromagnetic fields emitted by GSM 900 and WCDMA mobile phones on cognitive function in young male subjects
Riddervold IS et al.
(2010):
No effect of TETRA hand portable transmission signals on human cognitive function and symptoms
Eltiti S et al.
(2009):
Short-term exposure to mobile phone base station signals does not affect cognitive functioning or physiological measures in individuals who report sensitivity to electromagnetic fields and controls
Kleinlogel H et al.
(2008):
Effects of weak mobile phone - electromagnetic fields (GSM, UMTS) on well-being and resting EEG
Riddervold IS et al.
(2008):
Cognitive Function and Symptoms in Adults and Adolescents in Relation to RF Radiation from UMTS Base Stations
Eliyahu I et al.
(2006):
Effects of radiofrequency radiation emitted by cellular telephones on the cognitive functions of humans
Maier R et al.
(2004):
Effects of pulsed electromagnetic fields on cognitive processes - a pilot study on pulsed field interference with cognitive regeneration
Krause CM et al.
(2004):
Effects of electromagnetic field emitted by cellular phones on the EEG during an auditory memory task: a double blind replication study
Zwamborn APM et al.
(2003):
Effects of Global Communication system radio-frequency fields on Well Being and Cognitive Functions of human subjects with and without subjective complaints