Study overviews

Mobile phone related articles are

Please note that a publication can be assigned to several endpoints, i.e. the sum of publications from the individual thematic points and subpoints can be greater than the total sum of actual publications.

Experimental studies on mobile communications

1743 studies in total
  1. 770 studies
  2. 584 studies
  3. 519 studies
  4. 228 studies
  5. 208 studies
  6. 118 studies

DNA, proteins, and oxidative stress

584 studies in total
  1. 315 studies
  2. 205 studies
  3. 131 studies
  4. 42 studies
Authors Year Exposed system Endpoints Frequency range SAR Exposure duration Parameters
Butković I et al. 2024 intact cell/cell culture, boar semen - 700–3,500 MHz - - 5G, mobile communications, RF
Bisht KS et al. 2002 intact cell/cell culture, C3H 10T1/2 cells (derived from mouse embryo fibroblasts) formation of micronuclei 835.62 MHz 3.2–5.1 W/kg continuous for 3, 8,16, or 24 h CDMA, FDMA, mobile communications
Tice RR et al. 2002 intact cell/cell culture DNA and chromosomal damage 837 MHz 1–10 W/kg continuous for 3 or 24 h GSM, CDMA, TDMA, mobile communications
McNamee JP et al. 2002 intact cell/cell culture DNA damage; formation of miconuclei 1.9 GHz 0.1–10 W/kg continuous for 2 h GSM, PCS, mobile communications, microwaves
Hansen V et al. 1996 DNA/RNA, bacterium, virus/bacteriophages, <i>Escherichia coli</i>/WP2, WP2uvrA, W575 effects on biological material (enzyme activity, survival of bacteriophages, and DNA damage) 900 MHz 11.75–87 mW/kg continuous for about 100 days or about 30 days GSM, mobile communications
Zeni O et al. 2003 intact cell/cell culture incidence of micronuclei, cell cycle kinetics 900 MHz 0.2–1.6 W/kg intermittent; 6 min on/3 h off, 14 on/off cycles of exposure, altogether 44 h GSM, mobile communications
Diem E et al. 2005 intact cell/cell culture, GFSH-R17 (transformed rat granulosa cells) and human diploid fibroblasts DNA single-strand breaks and double-strand breaks 1,800 MHz 1.2–2 W/kg continuous for 4, 16 and 24 h GSM, mobile communications
Aitken RJ et al. 2005 animal, mouse/CD-1 Swiss, whole body DNA damage in spermatozoa 900 MHz 90 mW/kg repeated daily exposure, 12 h/day for 7 days GSM, mobile communications
Gorlitz BD et al. 2005 animal, mouse/B6C3F1, whole body induction of micronuclei 902–1,747 MHz 0.33–33.2 mW/g repeated daily exposure, 2 h/day, for 5 days GSM, mobile communications
Scarfi MR et al. 2006 intact cell/cell culture DNA damage (micronucleus formation), cell cycle kinetic 900 MHz 1–10 W/kg continuous for 24 h GSM, mobile communications