To determine if a near field radiofrequency exposure could induce a stress response.
The aims of this study were 1) if the loose-tube restraints (some movement allowed) necessary for accurate near field radiofrequency exposures could cause a stress response in animals, 2) if near field radiofrequency exposures to the head could induce a stress response in animals above that observed in sham-exposed immobilized animals, and 3) if a threshold level for brain near field radiofrequency exposure could be identified using a series of molecular stress markers.
The effects of the loose-tube immobilization with and without prior conditioning were investigated.
Frequency | 1.6 GHz |
---|---|
Charakteristic | |
Exposure duration | continuous for 2 h |
Exposure source | |
---|---|
Distance between exposed object and exposure source | 5 cm |
Chamber | Carousel containing 10 cylindrical PVC tubes arranged radially around a central antenna (see reference article). |
Setup | Animals were loosely restrained in the PVC cylindrical tubes. Clear acrylic pins were placed vertically behind the animal to prevent backward mobility. Only five animals at a time were placed in every other tube for symmetry. The field-exposure and the sham-exposure carousels were located in the same rack. |
The data revealed that Iridium-modulated microwave fields at brain SAR levels up to 5 W/kg did not induce a stress response in terms of elevated core body temperature, plasma ACTH and corticosteroids, or brain ODC, Fos and Jun mRNA levels in rats immobilized in loose-tube restraints (compared to sham-exposed loose-tube immobilized animals).
However, the non-tube-trained rats did experience a significant stress response when placed into the tube restraint apparatus. This stress response was seen clearly as short-term (less than 2 h) increases in plasma ACTH and corticosterone levels and a transient, small increase in core body temperature. Adaptation by prior conditioning (tube training) lessened the extent and duration of the stress-related marker elevations.
In conclusion, the pulse modulated digital Iridium radiofrequency field at SAR-values up to 5 W/kg is incapable of altering these stress-related responses. This conclusion is further supported by the use of a radiofrequency field exposure apparatus that minimized immobilization stress.
This website uses cookies to provide you the best browsing experience. By continuing to use this website you accept our use of cookies.