Study overviews

Mobile phone related articles are

Please note that a publication can be assigned to several endpoints, i.e. the sum of publications from the individual thematic points and subpoints can be greater than the total sum of actual publications.

Experimental studies on mobile communications

1711 studies in total
  1. 747 studies
  2. 570 studies
  3. 512 studies
  4. 225 studies
  5. 205 studies
  6. 118 studies

DNA, proteins, and oxidative stress

570 studies in total
  1. 313 studies
  2. 198 studies
  3. 122 studies
  4. 42 studies

Gene/protein expression (in general) 122 studies in total

Authors Year Exposed system Endpoints Frequency range SAR Exposure duration Parameters
Sepehrimanesh M et al. 2014 animal, rat/Sprague-Dawley, whole body protein expression in testes 900 MHz 0.19–1.22 W/g repeated daily exposure for 1 h on 30 consecutive days mobile phone, mobile communications
Akhavan-Sigari R et al. 2014 human, partial body: head relationship between <i>p53</i> expression, <i>p53</i> mutations, survival time and cell phone usage 800–1,900 MHz 0.66–1.53 W/kg repeated daily exposure of less than 3 hours mobile phone, mobile communications
Shivashankara AR et al. 2015 human - - - - mobile phone, mobile communications
Siqueira EC et al. 2016 human cytokine expression in parotid gland saliva - - up to 200 minutes per month for up to 10 years mobile phone, mobile communications
Kim JH et al. 2016 - - 835 MHz - - mobile phone, mobile communications
Roux D et al. 2011 intact cell/cell culture, normal human epidermal keratinocytes gene expression 900 MHz 2.6–73 mW/kg continuous for 10 min mobile phone, mobile communications, CW continuous wave
Manta AK et al. 2017 invertebrate, <i>Drosophila melanogaster</i>/Oregon-R (wildtype) - 1,800 MHz - - mobile phone, mobile communications, GSM
Kim JH et al. 2017 animal, mouse/C57BL/6 - 835 MHz - - mobile phone, mobile communications, RF field, CW continuous wave
Lu Y et al. 2014 intact cell/cell culture, N9 cells (mouse microglial cells) and C8-D1A cells (mouse astrocyte type I cells) proinflammatory protein expression and gene expression; nitric oxide release; STAT3 activation, activation of microglia and astrocytes 1,800 MHz 2 W/kg intermittent for 1, 3, 6, 12, or 24 hours (5 min on and 10 min off) mobile phone, mobile communications, RF field, PW pulsed wave
Karaca E et al. 2012 intact cell/cell culture DNA damage (micronucleus assay), gene expression of pro-apoptotic and anti-apoptotic genes 10.715 GHz 0.725 W/kg continuous for 6 h per day for 3 days mobile phone, mobile communications, RF field, microwaves